Electron and Photon Production From Relativistic Laser-Plasma Interactions

نویسنده

  • E. Lefebvre
چکیده

The interaction of short and intense laser pulses with plasmas is a very efficient source of relativistic electrons with tunable properties. In low density plasmas, we observed bunches of electrons up to 200 MeV, accelerated in the wake field of the laser pulse. Less energetic electrons (tens of MeV) have been obtained, albeit with a higher efficiency, during the interaction with a solid target. When these relativistic electrons slow down in a thick tungsten target, they emit very energetic Bremsstrahlung photons which have been diagnosed directly with photoconductors, and indirectly through photonuclear activation measurements. Dose, photoactivation, a nd photofission measurements are reported. These results are in reasonable agreement, over three orders of magnitude, with a model built on laser -plasma interaction and electron transport numerical simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its...

متن کامل

Nonlinear collective effects in photon–photon and photon–plasma interactions

We consider strong-field effects in laboratory and astrophysical plasmas and high intensity laser and cavity systems, related to quantum electrodynamical (QED) photon–photon scattering. Current state-of-the-art laser facilities are close to reaching energy scales at which laboratory astrophysics will become possible. In such high energy density laboratory astrophysical systems, quantum electrod...

متن کامل

Ultra- Relativistic Solitons with Opposing Behaviors in Photon Gas Plasma

We have studied the formation of relativistic solitary waves due to nonlinearinteraction of strong electromagnetic wave with the plasma wave. Here, our plasma isrelativistic both in temperature and in streaming speed. A set of equations consisting ofscalar and vector potentials together with a third order equation for the enthalpy inphoton gas plasma is obtained analytic...

متن کامل

اثر کانال یونی بر خودکانونی شدن پالس لیزری گاؤسی در پلاسماهای کم چگال

 We have considered the self-focusing of a Gaussian laser pulse in unmagnetized plasma. High-intensity electromagnetic fields cause the variation of electron density in plasma. These changes in the special conditions cause the acceleration of electrons to the higher energy and velocities. Thus the equation of plasma density evolution was obtained considering the electrons ponderomotive force. T...

متن کامل

شبیه‌سازی ذره‌ای شتاب دادن الکترون‌ها در پلاسمای کم چگال

One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002